Han's conjecture and Hochschild homology for null-square projective algebras

نویسندگان

چکیده

Let $\mathcal H$ be the class of algebras verifying Han's conjecture. In this paper we analyse two types with aim providing an inductive step towards proof Firstly show that if algebra $\Lambda$ is triangular respect to a system non necessarily primitive idempotents, and at idempotents belong H$, then in H$. Secondly consider $2\times 2$ matrix algebra, on diagonal, projective bimodules corners, zero corner products. They are not diagonal idempotents. However, analogous result holds, namely both itself

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hochschild homology of structured algebras

We give a general method for constructing explicit and natural operations on the Hochschild complex of algebras over any PROP with A∞–multiplication—we think of such algebras as A∞–algebras “with extra structure”. As applications, we obtain an integral version of the Costello-Kontsevich-Soibelman moduli space action on the Hochschild complex of open TCFTs, the Tradler-Zeinalian action of Sulliv...

متن کامل

Hopf–hochschild (co)homology of Module Algebras

Our goal in this paper is to define a version of Hochschild homology and cohomology suitable for a class of algebras admitting compatible actions of bialgebras, called “module algebras” (Definition 2.1). Our motivation lies in the following problem: for an algebra A which admits a module structure over an arbitrary bialgebra B compatible with its product structure, the Hochschild or the cyclic ...

متن کامل

Hochschild (co)homology of exterior algebras

The minimal projective bimodule resolutions of the exterior algebras are explicitly constructed. They are applied to calculate the Hochschild (co)homology of the exterior algebras. Thus the cyclic homology of the exterior algebras can be calculated in case the underlying field is of characteristic zero. Moreover, the Hochschild cohomology rings of the exterior algebras are determined by generat...

متن کامل

Higman Ideal, Stable Hochschild Homology and Auslander-reiten Conjecture

Let A and B be two finite dimensional algebras over an algebraically closed field, related to each other by a stable equivalence of Morita type. We prove that A and B have the same number of isomorphism classes of simple modules if and only if their 0-degree Hochschild Homology groups HH0(A) and HH0(B) have the same dimension. The first of these two equivalent conditions is claimed by the Ausla...

متن کامل

Hochschild and Cyclic Homology of Finite Type Algebras

We study Hochschild and cyclic homology of finite type algebras using abelian stratifications of their primitive ideal spectrum. Hochschild homology turns out to have a quite complicated behavior, but cyclic homology can be related directly to the singular cohomology of the strata. We also briefly discuss some connections with the representation theory of reductive p–adic groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2021

ISSN: ['1943-5258', '0022-2518', '1943-5266']

DOI: https://doi.org/10.1512/iumj.2021.70.8402